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ABSTRACT

The spectator model, a general approach to the relativistic treatment
of nuclear physics problems in which spectators to nuclear interactions are
put on their mass-shell, will be defined and described. The approach grows
out of the relativistic treatment of two and three body systems in which one
particle is off-shell, and recent numerical results for the NN interaction will be
presented. Two meson-exchange models, one with only 4 mesons (7,0, p,w)
but with a 25% admixture of 4° coupling for the pion, and a second with 6
mesons (7,0, p,w,6,and n) but a pure ~54* pion coupling, are shown to give
very good quantitative fits to NN scattering phase shifts below 400 MeV,
and also a good description of the p “Ca elastic scattering observables.

INTRODUCTION

This talk will report on an approach to the relativistic treatment of nu-
clear systems which has grown out of work using relativistic equations with
one particle off-shell. The essence of this approach is that the relativistic
series of Feynman diagrams describing any nuclear process can always be
reorganized so that only the particles which are interacting are off-shell, and
all other particles, which are spectators to the interaction, can be put on-
shell. For iwo and three nucleon systems this can always be done so that
only one particle is off-shell, and the amplitudes required are either covariant
vertex functions or covariant scattering amplitudes. With modifications, it
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appears that this general approach can be extended to many body systems,
and I now refer to it as the spectator model.

Before turning to the details, a few words of philosophy are in order.
It is assumed that there are at least two distance scales in nuclear physics.
At large distances, from one to two fermis and beyond, it is assumed that
nuclear forces are peripheral, and might be correctly described by meson
exchange mechanisms. The minimal set of meson exchange diagrams which
should be treated is the sum of all ladder and crossed ladder diagrams. Be-
low the meson production threshold, this set will be regarded as sufficient,
but above the production threshold self energies must be included, but only
as necessary to insure 3 (and perhaps 4) body unitary. Values of meson and
baryon parameters, particularly masses, will be taken as much as possible
from known, measured results. The examples developed in this talk are taken
from this meson exchange picture, which is regarded as a good description
of the long range, peripheral interactions.

At shorter distances, probably inside of a few tenths of a fermi, it is
assumed that the physics is best described in terms of the underlying quark
and gluon degrees of freedom. It follows that the structure of mesons and
baryons, their strong coupling constants and form factors, and measured
baryon electromagnetic form factors, are best described in terms of quarks
and gluons. Furthermore, these structures are probably non-perturbative in
character, requiring either a full treatment of QCD, or some realistic model-
ing of the non-perturbative (confining) forces in QCD. For the next decade,
modeling will probably be necessary and it would be very desirable to develop
a relativistic quark cluster model (RQCM) in which both the relativistic na-
ture of the quarks and gluons, and the relativistic motion of the composite
mesons and baryons could be treated. One way to begin such a program
is introduce Bethe-Salpeter wave functions for the ¢7 structure of mesons,
and the ggq structure of baryons. Instead of introducing phenomenological
confining forces, and calculating these wave functions, we start in the “mid-
dle” and parameterize the wave functions themselves, fit the parameters to
data, and then use the wave functions to estimate the size of quark structure
effects in nuclear systems. This program has been started in collaboration
with Warren Buck and Hiroshi Ito of Hamptonr University, and sorme initial
results are described in Ito’s talk included in these proceedings.

The remainder of this talk is divided into three sections. First, in re-
sponse to the title of this Workshop, some connections will be developed
between light front equations and relativistic equations with one particle
on-shell. Next, the concepts used in the spectator model will be reviewed,
and it will be shown how they are applied to nuclear physics problems. Fi-



nally, recent unpublished numerical results will be presented. This work is
being done with 2 number of collaborators, who will be named as the work

is described.

Connections

In this section, a connection will be made between the equation with one
particle on-shell, and the light front equation. The arguments will be given
for the equation describing the bound state of two spin zero particles only,

but should be easily generalized.
We start with the Bethe-Salpeter (BS) equation® for the bound state

vertex:

T(p, Ps) = [ ye” (5K AR A (k)T (k. Po) e

where V is the relativistic kernel (unspeciﬁed in this discussion) and A(k)
is the propagator for the spin zero nucleon of mass m:

and k; and k; are the 4 momenta of particles 1 and 2:

1
ki=>Pg+k Ps=hki+tk = (Mz,0)

k2=%PB—k k= ks — k) = (ko, F) (3)

The disadvantage of the BS equation is that it is 4-dimensional; it
requires integration over the relative energy k, as well as the relative 3-
momentum k. Furthermore, integration over k, is complicated by the pres-
ence of singularities in the A’s, ¥, and I'. The latter problem is usually
dealt with by performing a Wick rotation in k, so that this integration is
transformed along the imaginary axis. While this helps for the bound state
equation, it does not remove all complications which arrise in the calculation
of scattering amplitudes or form factors, and, in any case, the k, integration
still remains.?

However, it is possible to “reduce” the BS equation by restricting the
k, integration in some covariant fashion. While some physicists continue to
believe that these are “approximations” to the Bethe-Salpeter equation, they



are, in fact, new equations which are just as exact (or inexact) as the original
BS equation. If the role of these equations is to sum all ladders and crossed
ladders, then it can be shown that these new equations not only eliminate
this troublesome extra variable, but they also improve the convergence of

the series for the kernel V.2
A form of the light front Weinberg equationt can be obtained in the
following hueristic manner. First introduce the light front variables ko=k, %

k; and k| and then note that

dik = %dk-dhd’k_;_ = -;-M,,dk_arxdzk \ (4)

where z = L——'f-+%- and varies from —oo to +0. Viewed as a complex function
of k_, the propagator has only two simple poles at

k.= A—g—}; — Mg — ie Sgn(z) (5a)
2 . -
=_M_:d'-—=)'+%MB + i Sgn(l - z) (5

where E? = m? + k. Note that these two poles lie on opposite sides of the
real axis if and only if 0 € z < 1.° Hence, if we were to ignore the poles in
V and T for a moment, we see that the integration over k. would give zero
unless 0 < z < 1, and that closing the k_ contour in the lower half plane,
picking up pole (52) corresponding to putting particle 1 on shell, would give

_,/(2 T kl)A(k-. / d”f il fko_MB (m? — k2)A(k2)

fl d.‘C dsz_ 1
(27)3 B — M%z(1 — z)

(8)

This procedure could be used to derive a wave equation if we assume the
nucleon poles coming from the propagator dominate the physics. The equa-

tion which corresponds to this assumption is

dikj_ ldz V(PF:"F)I‘(ICF:PB)
aing 7
T(pr. Pp) = /(27 o 2 FE}—-M3iz(l-2z) (T

F
where kr is the 4 vector with k. = 'E?"; — 1Mg. For later use we can



solve this for k, and k;, obtaining

kF= (%Msj';—%MB(I—-I),ICJ_,%MBI-%‘:;z) (80')

We note for future reference that if we had used (5b) to evaluate k_, and
defined z as before, the 4 vector would become

1 2
ke = (%Msz — sty ko Ty — MB(1 - x)) )

Equation(7) is precisely the Weinberg equation, if ¥ is chosen properly. It
is amusing that we obtained it by restricting particle one to its mass-shell.
However, the Weinberg equation is usually assumed to have both particles on
the mass-shell, and the propagator is the k_ energy difference derived from =
ordered perturbation theory. This point of view gives the same propagator,

but a different V.
The equation with one particle on-shell which I introduced previously®

can be obtained in a similar heuristic manner. Now we examine the singu-
larities in the complex k, plane, and in this case there are four:

ka=Eg—%M5—f€

2
= —(Ex + 3Mp) + e
= %MB — Ep +1ie

b

Closing the k, contour in the lower half plane would now give two terms

—i f (_:;%A(kl)a(kg) = f % f dk, {5+$2_—k§§) + 5‘7(;?2_;?22)}

z/ d3k j-dk J(Ek—%MB—ka) _ J(Eg-l-'%MB—k,) (10)
(27?)3 ? 2EkM3(2Eg —- MB) 2E;,.Mr3(2Ek + MB)

Note that the first term corresponds to placing particle one on its positive
energy mass shell, while the second puts particle two on its negative energy
mass-shell. Since these terms restrict k, to different values, they cannot be
added, and the corresponding integral equation has two channels:



£k {V(p*,kﬂr(fcﬂpﬂ _fo’*"")r(""P")} (11)

I'(p*, Pg) =
(P B) (2#)3 2E. M5 (25‘;, - MB) ZE;‘MB(ZE,E + MB)

where

1 -
= (E}, F EMB’k) (12)

and care should be taken not to confuse k¥ with k. in Eq.(4); the sub-
scripts refer to light front variables and the superscripts to Eq.(12). Also,
do not confuse these £ channels with the £ channels arrising in the spin %
case, which occur in addition to these.

Note that the second channel in Eq.(11) is very small for bound states
or scattering energies near 2m. Only in extreme situations need it be taken
into account. One extreme case occurs when Mg — 0. In this region, each
of the propagators in Eq.(11) has a singularity at Mp — 0, which however
is ezactly cancelled when Mz = 0.7 To describe such ultra-relativistic bound
states, both channels of Eq.(11) are needed. For applications to the NN sys-
tem at moderate energies, it is sufficient to use the original equation®

&k V(p*, k+)D(k*, Pp)

T'(p*,Pg) = f - ! 13

(p"2P2) = | @r)s 25 Mp (252 — Ms) (1)

Finally, a correspondence between Eq.(11) and Eq.(7) can be drawn. To

obtain this, make the following variable transformations® in the first and
second terms of Eq.{11}):

1% term: k_=k,—k;

zzgﬁ—;ﬁ 0<z< o

(14)
ord term: k. =k, —k;

z=8 +] 1< z <o

This gives the following result

_ [ @k { =dz V(p,ke)T(kf, Pp)
I(p, Pg) = (27):'»{/0 7(E§—;4"§I(:“z))

_ d:-: Vp, kr) (k'F,PB)}
1 (E2 — M;z(1 - z))




where kp are ki are as defined in Eq.(8a) and (8b). We see that (15) is
identical to the light front equation we would have obtained if we had kept
all the poles in Eq.(5) which lie in the lower half plane. (The pole (5a) lies
in the LHP for z > 0, while (5b) does for £ > 1.) If we were to ignore the
arguments of V and I, the two terms in Eq.(15) would cancel, restricting
the integration in z to [0,1], as in Eq.(7).

In conclusion, Eq.(7) and (11} differ in two ways: First, there is the vari-
able transformations (14) which are trivial in the sense that they are really
no difference at all. Secondly, there is the necessity to collapse the two terms
in (15) into a single term. This last difference is significant. It makes the
equations really different and is the origin of the lack of manifest rotational
invariance of the light front equations.

Concepts and their application

As advertized in the introduction, this section will review the concepts
used in the spectator model, and describe their applications. There are three
amplitudes which are sufficient for most applications. When bound states
are present, the relativistic vertex function with one particle off shell is re-
quired. This vertex function is related to a matrix element of the interacting
field between the bound state and the spectator particles in the final state,

which, for two body bound states, is

T35, Pg) = S(ps) < p11$(0)(Pz > (16)

where Pg = p;+pz and p = (p1—p2) as in Eq.(3) and 5(p2) is the propagator
of the off-shell particle 2. Blankenbecker and Cook were the first to intro-
duce this covariant vertex for the deuteron?, and a complete discussion of its
relation to relativistic deuteron wave functions has been given by Remler!®
and Buck and myself'l. For three body bound states a similar amplitude is

needed!?

T¥%(p,9,P5) = 57 (zs) < p1pald(0)| P > (a7

and I believe that the idea can be generalized, with some complications, to
four or more bodies. For systems with A nucleons, a vertex can be defined

in a similar way
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Figure 1: Concepts in the spectator model. In all diagrams, the cross indicates that

the particle is on-shell, and all bound states and A or A-1 particle systems
(denoted by a heavy dark line) are also on-shell. Two body bound state vertez
functions (a), three body bound state verter functions (b), vertez function for
one off-shell particle in an A body system {c], half off-shell (d) arnd fully of-
shell (e) scattering amplitudes, and equation for the BS amplitude consistent
with the spectator model ().



T (ps) = 57} (pa) < A ~1]8(0)] A > (18)

where nuclear matter can be treated by letting A — 0. These amplitudes
are drawn schematically in Fig. 1a,b, and c.

For scattering problems, the off-shell scattering amplitude is needed. For
two body scattering, the half off-shell amplitude is a generalization of {16):

M(p,p'; P} = 87 (%P —p) < -;*P +p|¢(0)[p", P > (19)

where p' and p are the relative momenta of the two particles in the initial and
final state, and the notation is meant to imply that both particles are on-shell
in the initial state, but that only particle 1 is on-shell in the final state. Hence

GP +p)2 =m? (20)

which becomes a contraint on p,. In the CM frame, P = (W,@, this con-
straint becomes

1
Po— E? - -2-W (21)

(The same constraint holds for the bound state, of course.) This amplitude
is illustrated diagramatically in Fig. 1d. Sometimes the fully off-shell ampli-
tude is required, which is shown diagramatically for the two body system in
Fig. le. Knowledge of these amplitudes implies knowledge of the relativis-
tic kernel V from which these amplitudes can be calculated by solving the
spectator wave equation, which in the CM for two spin zero particles is

o1 <1+ [ S5V

This is the same kernel which gives the bound state vertex function I3 =T
in Eq.(13). In fact, Eq.(13) can be derived from Eq.{22) by using the fact
that the existance of the bound state implies 2 pole in M at P? = P} = M}

_T(p, P)TH(¢', P)
M — P?

where R is non singular at P? = M}. Inserting (23) into (22), and dermand-

+R (23)

M(p,p'i P) =



ing that it hold in the vicinity of the pole, gives the bound state equation
(13).

It can be shown that the fully off-shell 2 body a.mphtude shown in Fig.
1e is sufficient to obtain solutions to the relativistic three body Faddeev
equations (a three body force term may also be needed), but it appears that
a systematic treatment of 4 or more particles may require two body ampli-
tudes with 3 or all 4 particles off shell. Such BS amplitudes can be calculated
consistently within the framework of the spectator model provided the kernel
V is known for all 4 particles off shell, which will be assumed. The equation,

represented diagramatically in Fig. 1f, is

MBS (p,p'; P) =

&k V(p,k; P)V(k,p'; P)
Vie.riF +f(2#)3 2EW (2B, — W)

.[ dskldskg V(p, ki; P)JWUC]_ Jko; P)V(kz, r'; P) (24)
(21!')6 4Ek1Ek.‘,W2(2.Ekl - W)(ZE,&, - W)

This definition of M55 is consistent in that MZ5 = M when one particle
is on-shell in both the initial and final state, and the off-shell extrapolation
defined in (24) is precisely the amplitude which arises in cases where the
spectator model does not uniquely define spectators in either the initial or
final state. I will not persue the many (greater than 3) body problem fur-
ther in this talk as the ideas are just being developed and in a state of fux.

The final concepts needed are the vertex functions which describe how
probes interact with nucleons or mesons. For nucleon scattering, the probe
is the nucleon itself, and the amplitudes needed are the M matrices just dis-
cussed. For pion scattering, the 7NNV vertex function, and the 7 ¥ scattering
amplitudes are needed. The 7NNV vertex function is contained in V, and
work is underway to apply the spectator model needed to 7V scattering; this
will not be discussed further. Finally, for electron scattering, the off shell
~ANN, 47+, and other current “operators” are needed. Recently, a way has
been found to introduce the currents in such a way that gauge invariance
is satisfied exactly, and pheonomological form factors (both electromagnetic
and strong, such as those used at the # V.V vertex} may be used without
constraints.’® This is achieved by reinterpreting the strong form factors as
self energies, and modceling the off shell current so that it is consistent with
the Ward-Takahashi identities which result:

gu i (k' k} = ATHE') — AT k) (25)
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This development removes the last obstacle to using the spectator approach
to calculate electromagnetic processes consistently, and V. Dmitrasinovic
(William and Mary), J.W. VanOrden(CEBAF) and I plan to use the NN
models discussed below to calculate electromagnetic interactions involving
deuterons.

Figure 2 illustrates how the concepts discussed above are used in appli-
cations. Figs. 22 and b show the relativistic impulse approximation to the
deuteron form factor and the three-body form factor {in the three body case,
the pd *He vertex is also required). The relativistic bound state vertex func-
tions and the off-shell nucleon form factors are required, and the spectators
to the electromagnetic interactions are on-shell. I originally viewed these
diagrams as an approximation to the full diagrams with all internal parti-
cles off-shell'*, but I now believe that these should be viewed as one term
(probably the largest) in the exact current operator, the structure of which
is largely determined by the dynamical content of the two body interaction
kernel V.1* (The other terms can be determined from V; in a OBE model
for V, there are only 3 kinds of terms, 2ll of which can be calculated.)

Figures 2¢c, d, and e show various contributions to electrodisintegration.
Fig. 2e is particularly amusing; this impulse diagram requires precisely the
bound state amplitude calculated in the spectator model! Figure 2d is a me-
son exchange contribution (MEC), and 2e is the final state interaction (FSI).
In Fig. 2e, the spectator is again on shell, and the half off-shell amplitude
calculated in Eq. (22) is just what is required for the rescattering. Note that
in the MEC Fig. 2d, there is no unique spectator, and two diagrams, one
with particle one on-shell and one with particle two on-shell, are required;
only one of these is shown in Fig. 2d.

Figure 2f shows how spectators can be uniquely identified if three body
scattering is regarded as a succession of two body scatterings. Using this
analyses, relativistic three body Faddeev equations, driven by the off-shell
amplitude shown in Fig. le, can be derived. In Fig. 2g the self consistent
equations for an A body bound state are written down diagramatically. The
kernel used in this equation is identical to the optical potential !5 required for
relativistic proton nuclear scattering, and results using such a potential will
be reported in the next section. In the limit when A — oo, if the two body
scattering amplitude M is approximate by its born term V, it can be shown
that only ¢ and w exchanges survive, and the mean feld results of Serot and
Walecka can be obtained.!® Hence the concepts of the spectator mode! can
be applied to few and many body problems in a consistent fashion.

The discussion presented in this section has been very heuristic, but it
is possible to develop the discussion in a more formal and rigorous manner.

11



Figure 2: Applications of concepts in the spectator model. Symbols are described in
figures or the tezt. Two (a) and three (b) body form factors in the impulse
approzimation; d{c, & p)n diagram for the RIA(c), MEC(d), and FSI{e) unth
the half off-shell amplitude shown in the dashed boz; typical sequence of two
particle scattering which drives the three body amplitudes are shown in {f)
with fully off-shell two body amplitude shown in the dashed boz; equation for
A nucleon bound state shown in (g) with potential for p-nucleus scattering

ghown in the dashed boz.



The advantages of the spectator model are

(i) it is manifestly covariant; the properties of all amplitudes under the
Lorentz group can be written down explicitly, and all amplitudes con-
serve energy and momentum, as required by space-time translational
invariance;

(i) there is 2 close connection to field theory through its expansion in
Feynman diagrams, permiting the dynamics of meson exchange to be

introduced in a natural way;

(iif) the non-relativistic limits of all amplitudes can be obtained naturally
in the m — oo limit, establishing a close correspondence with non-
relativistic theory and facilitating interpretation of all quantities;

(iv} it can be shown 3 that the kernel ¥ is rapidly convergentin the m — oo
limit, providing a smooth transition from two body equations to one

body equations; and

(v) there is cluster separability; for example, the 3 body equations are
driven by the same two body amplitudes calculated in the two body

problem.1?

There are two disadvantages of the spectator approach, only one of which
is serious, in my opinion. The non-serious disadvantage is that the equations
appear to be unsymmetric because only one of the two particles is on-shell.
When dealing with identical particles, where symmetry is required, it can
be obtained by explicitly symmetrizing the kernel, as illustrated in Fig. 3a
for the OBE model. Once this is done, it can be shown that the two body

r~ 3 . ,Q,___I + :
— — -*-O—F— TAY
(a)

HOMERON
| B o

Figure 3: (a)Symmetrization of the relativistic kernel, and (b)resulting symmetry of the

M malriz.
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amplitude is fully symmetric, as shown in Fig. 3b. Alternatively, with a
symmetrized kernel it can be shown that an equivalent form of the equation
can be writtein in which the propagator is an equal mixture of terms with
particle one on-shell and terms with particle two on-shell. Hence, while the
equations may look unsymmetric, they are in fact fully symmetric for iden-
tical particles, and the Pauli principle for two identical spin 3 nucleons is
satisfied exactly. :

A second disadvantage is more serious: the process of putting particles
on-shell introduces spurious singularities into the interaction kernels. (These
are not singularities associated with particle production, which are expected,
but singularities which have no physical origin.}) The singularity in the prop-
agator as Mg — 0, which was discussed in the previous section, is an example
of such a singularity; it arose because a “distant” negative energy pole was
ignored which is not “distant” and can not be ignored when Mg — 0. The
spurious singularities which occur in the kernel have a similar origin. It can
be shown? that such singularities arise from the way in which Feynman di-
agrams are divided into spectator and non-spectator pieces, and that when
all pieces are added together, these singularities cancel. This cancellation
may therefore be used to justify dropping the imaginary parts of these sin-
gularities. It does not appear that the real parts (principal values) of the
singularities can be discarded without greatly adding to the complexity of
the equations, but as they occur only when at least one particle is off-shell,
and therefore appear only in virtual intermediate states {which are integrated
over), and as they occur only at rather large momenta, they seem to have a
negligible effect on the numerical results and can be accepted as one of the
features of this phenomenology. Their numerical influence is presently being
studied in detail in colleboration with J.W. Van Orden.

Recent numerical results

This section will report on recent fits to the NN scattering phase shifts
and their first application: the predictions for 7 *°Ca scattering observables.

Work on using Eq.(13) (suitably generalized to describe two spin § par-
ticles) to describe the deuteron and NN scattering phase shifts has been un-
derway for some time. The non-relativistic limit of this equation was studied
some time ago!”, and numerical solutions for the deuteron in an OBE model
have also been obtained.!! The present work began in collaboration with K.
Holinde (Julich} who brought an early version of the Bonn phase shift code

14



to Williamsburg. Recently, J.W. VanOrden has made substantial improve-
ments in the code, and we now can automatically vary the OBE parameters
to obtain a best fit to the phase shifts, scattering lengths, effective ranges,
and deuteron binding energy. This work is still in progress, and there will be
small changes in the results I will report on here, but the essential features

are clear at this time.

The OBE models presented here have the following features:

(i} The coupling of pseudoscalar mesons (r and n) includes an off-shell

mixing parameter A,

gm [,\,,,15 +(1- Am)g’—"—ﬁ"—)»ﬁ] (286)

Zm

(ii) The coupling of vector mesons (p and w) also includes an off-shell

(iii)

mixing parameter A,

Ko .
gm {1+ £m(1 = An) + A 580" (By = pi)s
pr+pi)*
—(1- ,\m),cm%m_)} (27)

defined in such a way that the coupling is independent of A,, when
both the initial and final nucleon are on-shell. Note that this mixing
parameter gives off shell sensitivity only when the tensor coupling &,
is non-zero. Since the tensor coupling of the w meson is small, A, was

fixed at unity.

All meson nucleon vertices have the same phenomenological form factor

Py = (e (29

where A is an adjustable parameter (the same for all mesons), pm is
the meson mass, and ¢° is the square of the 4-momentum carried by

the meson.

The off-shell nucleon carries a form factor of the form

Fa(o?) = (%”;-}’;—) (29)

This form factor is essential for convergence of the equations.

15



(v) Both the direct and exchange terms shown in Fig. 3a use the form of
the four vector ¢* appropriate to the direct term

¢ =(ps—~p)? = (Es — E* - (57 - :)° (30)

New fits currently being prepared will relax the restriction given in (v), and
use the ¢® appropriate to each diagram. This will also require new form
factors. Some fits of this kind have already been obtained, and the results
do not differ significantly from those to be presented here.

Two OBE models have been found which fit the NN observables very
well. The fits to NN phase shifts below 400 MeV are shown in Figures 4 and
5. While there are some differences between the fits, these differences are
small, and it is not misleading to regard both models as fitting the phase
shifts equally well. Yet the two models differ significantly in their dynamical
content. Model 1 includes the exchange of only the 4 mesons essential to
any OBE description of nuclear forces: w, o, p, and w. The mixing parame-
ter A, = 0.25, corresponds to a2 25% admixture of 4% coupling for the pion.
Model 2 constrains A, = 0, giving a pure v°~# coupling for the pion which
many physicists believe is required by pair suppression and chiral symmaetry.

H
(meson| £ | &m [ An | &m ]
T

13.83 Q.25
14.11 0.00*
o 4,26 491
4.65 510
P 0.40 [ 7.22 | 0.97
0.65 | 6.20 | 0.77
W 7.49 | 0.26
8.79 | 0.02
7 _ _
5.26 0.47
5 - —
0.41 520
A= 2760 Ay = 1930
2250 2000
Table 1

*Constrained in Model 2.
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Figure 4: Phase shift fit for Model 1
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Figure 5: Phase shift fit for Model 2



To obtain an equally good fit to the phase shifts, this model requires an
additional n and § meson. The § meson is needed to give splitting between
15, and 385, phase shifts, which arises naturally when Ay # 0. The param-
eters of the two models which were adjusted by the fit are shown in Table
1. The top number in the table is the value of the parameter for Model 1;
the second number for Model 2. Note that the values of the parameters are
reasonable for both models, to the extent that they are known, and that the
omega meson coupling constant is smaller than that required by most other
models. This reflects the fact that some of the short range repulsion comes
from contributions of negative energy states, requiring the omega to provide
less of the needed repulsion.!”

Deuteron wave functions have been calculated for both models. They
differ significantly in the size of their relativistic components. The largest
of these is always the triplet P state, which is 0.51% in Model 1, but only
0.12% in Model 2.

The first real test of Models 1 and 2 has been done in collaboration
with Khin Maung Maung (Old Dominion University and NASA), John Tjon
(Utrecht), Larry Townsend (NASA), and S.J. Wallace (UMd).!® The rel-
ativistic impulse approximation for the proton nucleus optical potential,
shown in Fig. 2g, was evaluated for a **Caq target using (i) relativistic ¥°Ca
densities supplied by B. Serot and C. Horowitz!®, {ii} the NN scattering ma-
trices determined by Models 1 and 2, and (iii) the Dirac scattering code
of Tjon and Wallace.!® No parameters are adjusted in this calculation; the
results, which are an absolute prediction, are shown in Fig. 6. Note that
both models give a qualitatively good description of the 7 °Ca observables
at 200 MeV, and results at other energies (up to 500 MeV) are just as good.
It is amusing that Model 1, with only four mesons and 25% ~° coupling
for the pion, fits these observables as well as it does. We look forward to
the prediction of these two {and other) models for the deuteron electro- and

photo-disintegration observables.

Conclusion

The spectator model is being vigorously persued. Preliminary results for
NN observables betow 400 MeV have been obtained which give a very good
description of the phase shifts and deuteron binding energy. These same
models also describe § ‘°Ca observables quite well. A new generation of
calculations of two body electromagnetic observables (deuteron form factors,
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Figure 6: Prediction for the § °Ca scattering observables at 200 MeV. Solid lines are
Model 1, dashed lines are Model 2. Crosses are data points.
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threshold electrodisingetration, and d(e,e'p)n measurements) is underway.
These calculations will use a relativistic current operator consistent with
the relativisiic OBE kernels used in the NN interaction, and will be exactly
gauge invariant. Calculations of nuclear matter and three body bound states,
consistent with the spectator model and the two body dynamics, are planned

for the future.

It is a pleasure to acknowledge the support of the Department of Energy

through CEBAF.
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